Physiology of Sensory System

Dr Suman Ahuja Associate Professor Department of Kriya Sharir

Sensory Organs

Sense

Organ

Touch

Skin

(external)

Taste

Tongue

Smell

Nose

Hearing/ Equilibrium Ears

Sight

Eyes

The Sensory System

- The central nervous system receives information from the internal and external environment via the sensory organs.
- Sensory organs are able to "sense" this information because of specialized receptors.
- When a receptor is triggered, it causes an action potential in the sensory neuron.

Types of Sensory Receptors

- 1. Mechanoreceptors stimulated by changes in pressure or movement
 - Found in skin and muscles
- 2. Thermoreceptors stimulated by changes in temperature
 - Found in skin
- 3. Pain receptors stimulated by tissue damage
 - Found in skin and viscera

Types of Sensory Receptors (continued)

- 4. Chemoreceptors stimulated by changes in chemical concentration of substances
 - Used for taste and smell
- 5. Photoreceptors stimulated by light
 - Found only in the eye

Sense of Touch

- Mechanoreceptor
 s in the skin and
 viscera detect
 varying degrees
 of pressure.
- Free nerve endings have pain receptors and thermoreceptors.

Sense of Touch - Pain

- Pain is caused by chemicals released by inflamed tissues.
 - Aspirin and ibuprofen reduce pain by blocking synthesis of these chemicals
- Referred pain inside the body's organs, pain is often felt in another area.
 - Ex: Pain from the heart is felt in the left shoulder and arm

Senses of Taste & Smell

- Taste and smell are "chemical senses"
- Taste tastebuds containing chemoreceptors are found in the epithelium of the tongue
- Papillae (bumps) on the tongue contain many receptors
- Receptors can distinguish between sweet, sour, salty, and bitter tastes.

Senses of Taste & Smell

 Smell – within the nasal cavity, chemoreceptors in the olfactory bulb are stimulated by odor

Senses of Taste & Smell

 Smells have been shown to be linked to memories because the olfactory bulb is linked to the limbic

system c

- Anatomy of the Ear
 - 1. Outer Ear includes:
 - pinna (external ear)
 - auditory canal

- Anatomy of the Ear
 - -2. Middle Ear- include
 - Eardrum (tympanic membrane)
 - Ossicles 3 small bond
 - -1) Malleus (hammer)
 - -2) Incus (anvil)
 - -3) Stapes (stirrup)
 - Eustachian tube equalization of air pressure ("pops" ear)

- Anatomy of the Ear
 - 3. Inner Ear includes:
 - Semicircular canals – involved with equilibrium
 - Cochlea snailshaped structure involved with hearing

- How we Hear
 - 1. Sound waves travel through the auditory canal to the eardrum.
 - 2. The sound waves cause the eardrum to vibrate.
 - 3. The vibration causes the malleus (hammer) to hit the incus (anvil) and then the stapes (stirrup).
 - 4. The vibration passes to the fluid in the cochlea of the inner ear.
 - 5. Each part of the spiral cochlea is sensitive to different frequencies of sound.
 - 6. The auditory nerve takes impulses to the brain.

- Equilibrium
 - Mechanoreceptors in the semicircular canals detect rotation and movement of the head
 - Little hair cells send
 information to the brain
 to cause appropriate
 motor output so as to
 correct position when it
 is unbalanced.
 - Vertigo (dizziness)

- Anatomy of the Eye
 - Sclera protection (white of eye)
 - Cornea refracts light
 - Vitreous humor –maintains eyeball shape
 - Retina
 - Rods black & white vision
 - Cones color vision
 - Optic nerve sends impulses to brain

- Anatomy of the Eye
 - Lens focuses light
 - Cilliary body holds lens in place, accommodation
 - Iris regulates lighten entrance (muscle)
 - Pupil admits light

Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings

- How we see
 - 1. Light enters through the pupil.
 - The iris can contract or dilate to allow different amounts of light into the eye.

- How we see
 - Light passes through the lens and vitreous humor to the back of the eye, the retina.
 - The lens can change shape to focus light through accommodation.
 - Object is far → the lens flattens

- How we see
 - The image projected from the lens on the back of the eye is upside down.

Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings

- How we see
 - 3. The retina has photoreceptor cells that detect light and send impulses to the brain.
 - Rods black and white vision
 - sensitive to light; night vision
 - Cones color vision & detail
 - Sensitive to bright light
 - Blue, green, and red pigment cones detect different wavelengths of light

- How we see
 - 4. Impulses from the rods and cones in the retina are sent to the optic nerve
 - This spot on the retina has not rods or cones and creates a blind spot.

- How we see
 - 5. The optic nerves from each eye cross at the optic chiasm.
 - Input from the right eye goes to the left occipital lobe
 - Input from the left eye goes to the right occipital lobe
 - 6. Visual integration
 centers in the occipital
 lobe process visual input.

Vision Disorders

- Farsightedness: trouble seeing close-up
 - eye too short and/or lens too weak
 - -light focuses behind retina
 - correct with "convex" lens to add power
- Nearsightedness: trouble seeing far away
 - eye is too long and/or lens is too powerful
 - -light focuses in front of retina
 - correct with "concave" lens to reduce power

Distant object Near object Hyperopia (Lens of eye too **Focused** Not focused weak for length on retina on retina of eyeball) Accommodation Accommodation Hyperopia corrected with convex lens (which increases overall refractive **Focused Focused** power) on retina on retina No accommodation Accommodation (c)

Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings

- Presbyopia: Oldsightedness
 - The crystalline lens tends to harden with age
 - The near point of distinct vision moves further and further away from the eye with age.

Astigmatism

- Abnormal curvature of the cornea
- Light from vertical and horizontal direction do not focuses in the same point

Color Blindness

- Red-green color-blindness occurs when red or green cones or pigments are missing
 - Due to sex-linked gene (on X chromosomes) so more common in men.
- Non-sex-linked condition
 - Blue-color blindness- missing blue cones or pigments
 - Monochromats: people who are totally colorblind, more severe

Disorders of the Eye

Glaucoma

 Damage to the optic nerve occurs due to increased eye pressure

Cataracts

- Clouding of the lens that affects vision
- Very common in older people

10.27b