# PHYSIOLOGICAL BASIS OF ECG

DR.KOMAL CHAVDA

DEPT. OF PHYSIOLOGY

# **ELECTROCARDIOGRAPHY**

- Electrocardiography is the **technique** by which electrical activities of the heart are studied.
- This technique was discovered by Dutch physiologist, Einthoven Willem, who is considered the father of electrocardiogram (ECG).

## **□** ELECTROCARDIOGRAPH

• Electrocardiograph is the **instrument** (machine) by which electrical activities of the heart are recorded.

## **ELECTROCARDIOGRAM**

- Electrocardiogram (ECG) is the record or **graphical registration** of electrical activities of the heart, which occur prior to the onset of mechanical activities.
- It is the **summed electrical activity** of all cardiac muscle fibers recorded from surface of the body.

# **USES OF ECG**

- Electrocardiogram is useful in determining and diagnosing the following:
- 1. Heart rate
- 2. Heart rhythm
- 3. Abnormal electrical conduction
- 4. Poor blood flow to heart muscle
- 5. Heart attack
- 6. Coronary artery disease
- 7. Hypertrophy of heart chambers.

#### • (DURATION

- Time duration of different ECG waves is plotted horizontally on X-axis.
- On X-axis
- 1 mm = 0.04 second
- 5 mm = 0.20 second
- (AMPLITUDE
- Amplitude of ECG waves is plotted vertically on Y-axis.
- On Y-axis
- 1 mm = 0.1 mV
- 5 mm = 0.5 mV

## **ECG LEADS**

- ECG is recorded by placing series of electrodes on the surface of the body called ECG leads and are connected to the ECG machine.
- Electrodes are fixed on the limbs.
- Right arm, Left arm and Left leg are chosen.
- Heart is said to be in the center of an **imaginary equilateral triangle** drawn by connecting the roots of these three limbs.
- This triangle is called Einthoven triangle.

- □ECG is classified into two categories.
- I. Bipolar leads
- II. Unipolar leads.

## **BIPOLAR LIMB LEADS**

- Also known as standard limb leads.
- one electrode is positive and the other one is negative
- Standard limb leads are of three types:
- a. Limb lead I
- b. Limb lead II
- c. Limb lead III.



#### Lead I

- Lead I is obtained by connecting right arm and left arm.
- Right arm is connected to the negative terminal of the instrument and the left arm is connected to the positive terminal.

#### **Lead II**

- Lead II is obtained by connecting right arm and left leg.
- Right arm is connected to the negative terminal of the instrument and the left leg is connected to the positive terminal.

## □Lead III

- Lead III is obtained by connecting left arm and left leg.
- Left arm is connected to the negative terminal of the instrument and the left leg is connected to the positive terminal.

## **UNIPOLAR LEADS**

- Unipolar leads are of two types:
- 1. Unipolar limb leads
- 2. Unipolar chest leads.

# □1. Unipolar Limb Leads

- Active electrode is connected to one of the limbs.
- Unipolar limb leads are of three types:
- i. aVR lead
- ii. aVL lead
- iii. aVF lead.

#### i. aVR lead

• Active electrode is from right arm. Indifferent electrode is obtained by connecting left arm and left leg.

#### ii. aVL lead

• Active electrode is from left arm. Indifferent electrode is obtained by connecting right arm and left leg.

#### iii. aVF lead

upper limbs.

• Active electrode is from left leg (foot). Indifferent electrode is obtained by connecting the two

## 2. Unipolar Chest Leads

- Chest leads are also called 'V' leads or precardial chest leads.
- Indifferent electrode is obtained by connecting the three limbs, viz. left arm, left leg and right arm, through a **resistance** of 5000 ohms.
- Active electrode is placed on six points over the chest.
- This electrode is known as the chest electrode and the six points over the chest are called V1, V2, V3, V4, V5 and V6. V indicates vector, which shows the direction of current flow.

## Position of chest leads:

- V1 : Over 4th intercostal space near right sternal margin
- V2 : Over 4th intercostal space near left sternal margin
- V3: In between V2 and V4
- V4 : Over left 5th intercostal space on the mid clavicular line
- V5 : Over left 5th intercostal space on the anterior axillary line
- V6 : Over left 5th intercostal space on the mid axillary line.



## WAVES OF NORMAL ECG

- Normal ECG consists of waves, complexes, intervals and segments.
- Waves of ECG recorded by limb lead II are considered as the typical waves.
- Normal electrocardiogram has the following waves, namely P, Q, R, S and T.

## Major Complexes in ECG

- 1. 'P' wave, the atrial complex
- 2. 'QRS' complex, the initial ventricular complex
- 3. 'T' wave, the final ventricular complex
- 4. 'QRST', the ventricular complex.

| Wave/Segment | From – To                                    | Cause                                                     | <b>Duration</b> (second) | Amplitude (mV)                       |
|--------------|----------------------------------------------|-----------------------------------------------------------|--------------------------|--------------------------------------|
| P wave       | _                                            | Atrial depolarization                                     | 0.1                      | 0.1 to 0.12                          |
| QRS complex  | Onset of Q wave to the end of S wave         | Ventricular depolarization and atrial repolarization      | 0.08 to 0.10             | Q = 0.1  to  0.2<br>R = 1<br>S = 0.4 |
| T wave       | _                                            | Ventricular repolarization                                | 0.2                      | 0.3                                  |
| P-R interval | Onset of P wave to onset of Q wave           | Atrial depolarization and conduction through AV node      | 0.18(0.12 to 0.2)        | _                                    |
| Q-T interval | Onset of Q wave and end of T wave            | Ventricular depolarization and ventricular repolarization | 0.4 to 0.42              | _                                    |
| S-T segment  | End of S wave and onset of T waveIsoelectric |                                                           | 0.08                     |                                      |

# THANK YOU