# **ELECTRO CARDIO GRAM**

BY DR. DINESH CHOUHAN

## INTRODUCTION

#### ELECTROCARDIOGRAPHY

- Electrocardiography is the technique by which electrical activities of the heart are studied.
- The spread of excitation through myocardium produces local electrical potential.
- This low-intensity current flows through the body.
- This current can be picked up from surface of the body by using suitable electrodes and recorded in the form of electrocardiogram.
- This technique was discovered by Dutch physiologist, Einthoven Willem, who is considered the father of electrocardiogram (ECG).

#### ELECTROCARDIOGRAPH

 Electrocardiograph is the instrument (machine) by which electrical activities of the heart are recorded.

#### ELECTROCARDIOGRAM

- Electrocardiogram (ECG or EKG from electrokardiogram in Dutch) is the record or graphical registration of electrical activities of the heart, which occur prior to the onset of mechanical activities.
- It is the summed electrical activity of all cardiac muscle fibers recorded from surface of the body.





## **USES OF ECG**

Electrocardiogram is useful in determining and diagnosing the following:

- 1. Heart rate
- 2. Heart rhythm
- 3. Abnormal electrical conduction
- 4. Poor blood flow to heart muscle (ischemia)
- 5. Heart attack
- 6. Coronary artery disease
- 7. Hypertrophy of heart chambers

#### **ELECTROCARDIOGRAPHIC GRID**

- The paper that is used for recording ECG is called ECG paper.
- ECG machine amplifies the electrical signals produced from the heart and records these signals on a moving ECG paper.
- Electrocardiographic grid refers to the markings (lines) on ECG paper.
- ECG paper has horizontal and vertical lines at regular intervals of 1 mm.
- Every 5th line (5 mm) is thickened.





#### DURATION

- Time duration of different ECG waves is plotted horizontally on X-axis.
- **ON X-AXIS** 1 mm = 0.04 second

```
5 mm = 0.20 second
```

#### **AMPLITUDE**

- Amplitude of ECG waves is plotted vertically on Y-axis.
- ON Y-AXIS

```
1 mm = 0.1 mV
5 mm = 0.5 mV
```

#### SPEED OF THE PAPER

- Movement of paper through the machine can be adjusted by two speeds, 25 mm/second and 50 mm/second.
- Usually, speed of the paper during recording is fixed at 25 mm/second.
- If heart rate is very high, speed of the paper is changed to 50 mm/second.

## **ECG LEADS**

- ECG is recorded by placing series of electrodes on the surface of the body.
- These electrodes are called ECG leads and are connected to the ECG machine.
- Electrodes are fixed on the limbs.
- Usually, right arm, left arm and left legare chosen.
- Heart is said to be in the center of an imaginary equilateral triangle drawn by connecting the roots of these three limbs.
- This triangle is called Einthoven triangle.



#### EINTHOVEN TRIANGLE AND EINTHOVEN LAW

- Einthoven triangle is defined as an equilateral triangle that is used as a model of standard limb leads used to record electrocardiogram.
- Heart is presumed to lie in the center of Einthoven triangle.
- Electrical potential generated from the heart appears simultaneously on the roots of the three limbs, namely the left arm, right arm and the left leg.



- ECG is recorded in 12 leads, which are generally classified into two categories.
- I. Bipolar leads
- II. Unipolar leads

## **BIPOLAR LIMB LEADS**

- Bipolar limb leads are otherwise known as standard limb leads.
- Two limbs are connected to obtain these leads and both the electrodes are active recording electrodes, i.e. one electrode is positive and the other one is negative.
- Standard limb leads are of three types:
- a. LIMB LEAD I
- **b.** LIMB LEAD II
- c. LIMB LEAD III



#### **LEAD I**

- Lead I is obtained by connecting right arm and left arm.
- Right arm is connected to the negative terminal of the instrument and the left arm is connected to the positive terminal.

#### **LEAD II**

- Lead II is obtained by connecting right arm and left leg.
- Right arm is connected to the negative terminal of the instrument and the left leg is connected to the positive terminal.

#### **LEAD III**

- Lead III is obtained by connecting left arm and left leg.
- Left arm is connected to the negative terminal of the instrument and the left leg is connected to the positive terminal.



#### **UNIPOLAR LEADS**

- Here, one electrode is **active electrode** and the other one is an **indifferent electrode**.
- Active electrode is positive and the indifferent electrode is serving as a composite negative electrode.
- Unipolar leads are of two types:
- 1. Unipolar limb leads
- 2. Unipolar chest leads

#### 1. UNIPOLAR LIMB LEADS

- Unipolar limb leads are also called augmented limb leads or augmented voltage leads.
   Active electrode is connected to one of the limbs.
- Indifferent electrode is obtained by connecting the other two limbs through a resistance.
- Unipolar limb leads are of three types:
- i. aVR lead
- ii. aVL lead
- iii. aVF lead

#### i. aVR LEAD

- Active electrode is from right arm.
- Indifferent electrode is obtained by connecting left arm and left leg.

#### ii. aVL LEAD

- Active electrode is from left arm.
- Indifferent electrode is obtained by connecting right arm and left leg.

#### iii. aVF LEAD

- Active electrode is from left leg (foot).
- Indifferent electrode is obtained by connecting the two upper limbs.



#### 2. UNIPOLAR CHEST LEADS

- Chest leads are also called 'V' leads or precardial chest leads.
- Indifferent electrode is obtained by connecting the three limbs, viz. left arm, left leg and right arm, through a resistance of 5000 ohms.
- Active electrode is placed on six points over the chest.
- This electrode is known as the chest electrode and the six points over the chest are called V1, V2, V3, V4, V5 and V6.
- V indicates vector, which shows the direction of current flow.



#### POSITION OF CHEST LEADS:

**V1**: Over 4th intercostal space near right sternal margin

**V2**: Over 4th intercostal space near left sternal margin

V3: In between V2 and V4

V4 : Over left 5th intercostal space on the mid clavicular line

**V5**: Over left 5th intercostal space on the anterior axillary line

**V6**: Over left 5th intercostal space on the mid axillary line.



## **WAVES OF NORMAL ECG**

- Normal ECG consists of waves, intervals and segments.
- Waves of ECG recorded by limb lead II are considered as the typical waves.
- Normal electrocardiogram has the following waves, namely P, Q, R, S and T.

#### MAJOR COMPLEXES IN ECG

- 1. 'P' wave, the atrial complex.
- 2. 'QRS' complex, the initial ventricular complex.
- 3. 'T' wave, the final ventricular complex.
- 4. 'QRST', the ventricular complex.



#### The Normal P Wave

## 'P' WAVE

- 'P' wave is a positive wave and the first wave in ECG.
- It is also called atrial complex.



#### **CAUSE**

- 'P' wave is produced due to the depolarization of atrial musculature.
- Atrial repolarization is not recorded as a separate wave in ECG because it merges with ventricular repolarization (QRS complex).

#### DURATION

Normal duration of 'P' wave is 0.1 second.

#### **AMPLITUDE**

Normal amplitude of 'P' wave is 0.1 to 0.12 mV.

#### MORPHOLOGY

- 'P' wave is normally positive (upright) in leads I, II, aVF, V4, V5 and V6.
- It is normally negative (inverted) in aVR.
- It is variable in the remaining leads, i.e. it may be positive, negative, biphasic or flat.

- Variation in the duration, amplitude and morphology of 'P' wave helps in the diagnosis of several cardiac problems such as:
- 1. RIGHT ATRIAL HYPERTROPHY: 'P' wave is tall (more than 2.5 mm) in lead II. It is usually pointed.
- 2. LEFT ATRIAL DILATATION OR HYPERTROPHY: It is tall and broad based or M shaped.
- **3. ATRIAL EXTRASYSTOLE:** Small and shapeless 'P' wave, followed by a small compensatory pause.
- 4. HYPERKALEMIA: 'P' wave is absent or small.
- 5. ATRIAL FIBRILLATION: 'P' wave is absent.

#### The QRS Complex

## 'QRS' COMPLEX

- 'QRS' complex is also called the **initial ventricular complex**.
- 'Q' wave is a small negative wave.
- It is continued as the tall 'R' wave, which is a positive wave.
- 'R' wave is followed by a small negative wave, the 'S' wave.



#### **CAUSE**

- 'QRS' complex is due to depolarization of ventricular musculature.
- 'Q' wave is due to the depolarization of basal portion of interventricular septum.
- 'R' wave is due to the depolarization of apical portion of interventricular septum and apical portion of ventricular muscle.
- 'S' wave is due to the depolarization of basal portion of ventricular muscle near the atrioventricular ring.

#### DURATION

Normal duration of 'QRS' complex is between 0.08 and 0.10 second.

#### AMPLITUDE

- Amplitude of 'Q' wave = 0.1 to 0.2 mV.
- Amplitude of 'R' wave = 1 mV.
- Amplitude of 'S' wave = 0.4 mV.

#### **MORPHOLOGY**

- 'Q' wave is normally small with amplitude of 4 mm or less.
- It is less than 25% of amplitude of 'R' wave in leads I, II, aVL, V5 and V6. In the remaining leads, its amplitude is < 0.2 mm.
- From chest leads V1 to V6, 'R' wave becomes gradually larger. It is smaller in V6 than V5.
- 'S' wave is large in V1 and larger in V2. It gradually becomes smaller from V3 to V6.

#### **CLINICAL SIGNIFICANCE**

- Variation in the duration, amplitude and morphology of 'QRS' complex helps in the diagnosis of several cardiac problems such as:
- 1. BUNDLE BRANCH BLOCK: QRS is prolonged or deformed.
- 2. HYPERKALEMIA: QRS is prolonged.

## 'T' WAVE

• 'T' wave is the **final ventricular complex** and is a positive wave.

#### **CAUSE**

• 'T' wave is due to the **repolarization** of **ventricular musculature**.

#### DURATION

Normal duration of 'T' wave is 0.2 second.

#### **AMPLITUDE**

Normal amplitude of 'T' wave is 0.3 mV.

#### **MORPHOLOGY**

- 'T' wave is normally positive in leads I, II and V5 and V6.
- It is normally inverted in lead aVR. It is variable in the other leads, i.e. it is positive, negative or flat.

- Variation in duration, amplitude and morphology of 'T' wave helps in the diagnosis of several cardiac problems such as:
- 1. ACUTE MYOCARDIAL ISCHEMIA: Hyperacute 'T' wave develops. Hyperacute 'T' wave refers to a tall and broad-based 'T' wave, with slight asymmetry.
- 2. OLD AGE, HYPERVENTILATION, ANXIETY, MYOCARDIAL INFARCTION, LEFT VENTRICULAR HYPERTROPHY AND PERICARDITIS: 'T' wave is small, flat or inverted.
- 3. HYPOKALEMIA: 'T' wave is small, flat or inverted.
- 4. HYPERKALEMIA: 'T' wave is tall and tented.

## 'U' WAVE

- 'U' wave is not always seen. It is also an insignificant wave in ECG.
- It is supposed to be due to repolarization of papillary muscle.

## NORMAL ECG



- Appearance of 'U' wave in ECG indicates some clinical conditions such as:
- 1. HYPERCALCEMIA, THYROTOXICOSIS AND HYPOKALEMIA: 'U' wave appears. It is very prominent in hypokalemia.
- 2. MYOCARDIAL ISCHEMIA: Inverted 'U' wave appears.



FIGURE: ALL 12-LEADS NORMAL ECG

## INTERVALS AND SEGMENTS OF ECG

#### **'P-R' INTERVAL**

- 'P-R' interval is the interval between the onset of 'P' wave and onset of 'Q' wave.
- 'P-R' interval signifies the atrial depolarization and conduction of impulses through AV node.
- It shows the duration of conduction of the impulses from the SA node to ventricles

through atrial muscle and AV node.

- 'P' wave represents the atrial depolarization.
- Short **isoelectric** (zero voltage) period after the end of 'P' wave represents the time taken for the passage of depolarization within AV node.



#### **DURATION**

- •Normal duration of 'P-R interval' is 0.18 second and varies between 0.12 and 0.2 second.
- •If it is more than 0.2 second, it signifies the delay in the conduction of impulse from SA node to the ventricles. Usually, the delay occurs in the AV node.
- •It is called the **AV nodal delay.**

- •Variation in the duration of 'P-R' intervals helps in the diagnosis of several cardiac problems such as:
- 1. It is prolonged in bradycardia and first degree heart Block.
- 2. It is shortened in tachycardia, Wolf-Parkinson- White syndrome, Lown-Ganong-Levine syndrome, Duchenne muscular dystrophy and type II glycogen storage disease.

#### **'Q-T' INTERVAL**

- 'Q-T' interval is the interval between the onset of 'Q' wave and the end of 'T' wave.
- 'Q-T' interval indicates the ventricular depolarization and ventricular repolarization,

i.e. it signifies the electrical activity in ventricles.

#### DURATION

Normal duration of Q-T interval is between 0.4 and 0.42 second.

- 1. 'Q-T' interval is prolonged in long 'Q-T' syndrome, myocardial infarction, myocarditis, hypocalcemia and hypothyroidism.
- 2. 'Q-T' interval is shortened in short 'Q-T' syndrome and hypercalcemia.

#### **'S-T' SEGMENT**

- 'S-T' segment is the time interval between the end of
- 'S' wave and the onset of 'T' wave. It is an isoelectric period.

#### **J POINT**

- The point where 'S-T' segment starts is called 'J' point.
- It is the junction between the QRS complex and 'S-T' segment.

#### **DURATION OF 'S-T' SEGMENT**

• Normal duration of 'S-T' segment is 0.08 second.

- •Variation in the duration of 'S-T' segment and its deviation from isoelectric base indicates the pathological conditions such as:
- 1. Elevation of 'S-T' segment occurs in anterior or inferior myocardial infarction, left bundle branch block and acute pericarditis. In athletes, 'S-T' segment is usually elevated.
- Depression of 'S-T' segment occurs in acute myocardial ischemia, posterior myocardial infarction, ventricular hypertrophy and hypokalemia.
- 3. 'S-T' segment is prolonged in hypocalcemia.
- 4. 'S-T' segment is shortened in hypercalcemia.

#### **'R-R' INTERVAL**

• 'R-R' interval is the time interval between two consecutive 'R' waves.

#### **SIGNIFICANCE**

'R-R' interval signifies the duration of one cardiac cycle.

#### DURATION

Normal duration of 'R-R' interval is 0.8 second.

### SIGNIFICANCE OF MEASURING 'R-R' INTERVAL

- Measurement of 'R-R' interval helps to calculate:
- Heart rate
- 2. Heart rate variability



mm/mV 1 square = 0.04 sec/0.1 mV

#### 1. HEART RATE

Heart rate is calculated by measuring the number of 'R' waves per unit time.

#### 2. HEART RATE VARIABILITY

- Heart rate variability (HRV) refers to the beat-to beat variations.
- Under resting conditions, the ECG of healthy individuals exhibits some periodic variation in 'R-R' intervals.
- This rhythmic phenomenon is known as **respiratory sinus arrhythmia** (RSA), since it fluctuates with the phases of respiration.

#### SIGNIFICANCE OF HEART RATE VARIABILITY

- HRV decreases in many clinical conditions like:
- 1. Cardiovascular dysfunctions such as hypertension.
- 2. Diabetes mellitus
- 3. Psychiatric problems such as panic and anxiety.

#