CONCENTRATION OF URINE

DR. DINESH CHOUHAN

INTRODUCTION

- Every day 180 L of glomerular filtrate is formed with large quantity of water.
- If this much of water is excreted in urine, body will face serious threats.
- So the concentration of urine is very essential.
- Osmolarity of glomerular filtrate is same as that of plasma and it is 300 mOsm/L.
- But, normally urine is concentrated and its osmolarity is four times more than that of plasma, i.e. 1,200 mOsm/L.
- Osmolarity of urine depends upon two factors:
- 1. WATER CONTENT IN THE BODY
- 2. ANTIDIURETIC HORMONE (ADH)

- Mechanism of urine formation is the same for dilute urine and concentrated urine till
 the fluid reaches the distal convoluted tubule.
- However, dilution or concentration of urine depends upon water content of the body.

FORMATION OF DILUTE URINE

- When, water content in the body increases, kidney excretes dilute urine.
- This is achieved by inhibition of ADH secretion from posterior pituitary.
- So water reabsorption from renal tubules does not take place leading to excretion of large amount of water upto 20 lit./day.
- This makes the urine dilute.

FORMATION OF CONCENTRATED URINE

- When the water content in body decreases, kidney retains water and excretes concentrated urine.
- Formation of concentrated urine is not as simple as that of dilute urine.
- It involves two processes:
- 1. Development and maintenance of medullary gradient by countercurrent system
- 2. Secretion of ADH

DEVELOPMENT AND MAINTENANCE OF MEDULLARY GRADIENT

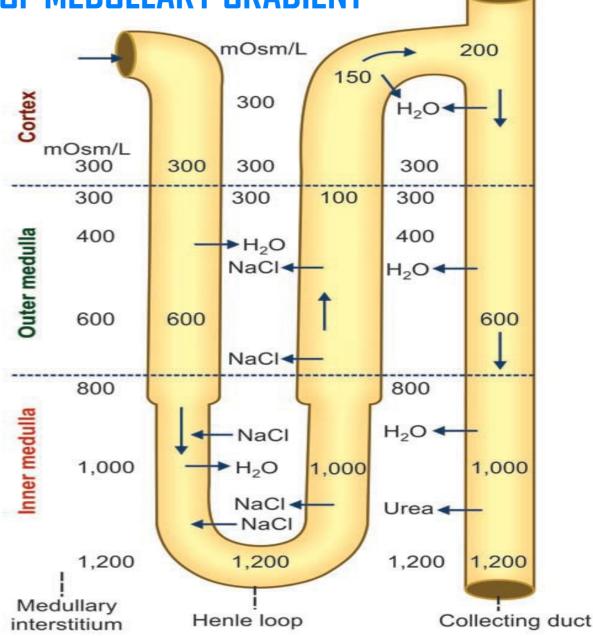
- Cortical interstitial fluid is isotonic to plasma with the osmolarity of 300 mOsm/L.
- Osmolarity of medullary interstitial fluid near the cortex is also 300 mOsm/L.

- However, while proceeding from outer part towards the inner part of medulla, the osmolarity increases gradually and reaches the maximum at the inner most part of medulla near renal sinus.
- Here, the interstitial fluid is hypertonic with osmolarity of 1,200 mOsm/L.
- This type of gradual increase in the osmolarity of the medullary interstitial fluid is called the medullary gradient.
- It plays an important role in the concentration of urine.

COUNTERCURRENT MECHANISM

 Kidney has some unique mechanism called countercurrent mechanism, which is responsible for the development and maintenance of medullary gradient and hyperosmolarity of interstitial fluid in the inner medulla. A countercurrent system is a system of 'U'shaped tubules (tubes) in which, the flow
of fluid is in opposite direction in two limbs of the 'U'shaped tubules.

DIVISIONS OF COUNTERCURRENT SYSTEM


- Countercurrent system has two divisions:
- 1. COUNTERCURRENT MULTIPLIER FORMED BY LOOP OF HENLE
- 2. COUNTERCURRENT EXCHANGER FORMED BY VASA RECTA

3. COUNTERCURRENT MULTIPLIER

- Loop of Henle functions as countercurrent multiplier.
- It is responsible for development of hyperosmolarity of medullary interstitial fluid and medullary gradient.

ROLE OF LOOP OF HENLE IN DEVELOPMENT OF MEDULLARY GRADIENT

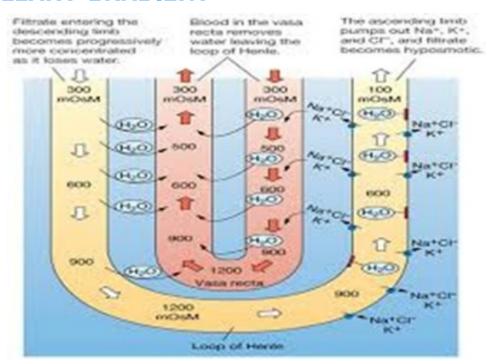
- Juxtamedullary nephrons plays a major role as countercurrent multiplier because loop of Henley in these nephrons is long and extends upto the deeper parts of medulla.
- Sodium chloride and other solutes are actively reabsorbed from ascending limb causes hyperosmolarity into the medullary interstitium.
- Now, due to the concentration gradient, the sodium and chlorine ions diffuse into the descending limb from medullary interstitium and reach the ascending limb again via hairpin bend.

- Thus, the sodium and chlorine ions are repeatedly recirculated between the descending and ascending limb of Henle loop through medullary interstitial fluid leaving a small portion to be excreted in the urine.
- Apart from this there is regular addition of more and more new sodium and chlorine ions into descending limb by constant filtration.
- Thus, the reabsorption of sodium chloride from ascending limb and addition of new sodium chlorine ions into the filtrate increase or multiply the osmolarity of medullary interstitial fluid and medullary gradient.
- Hence, it is called countercurrent multiplier.

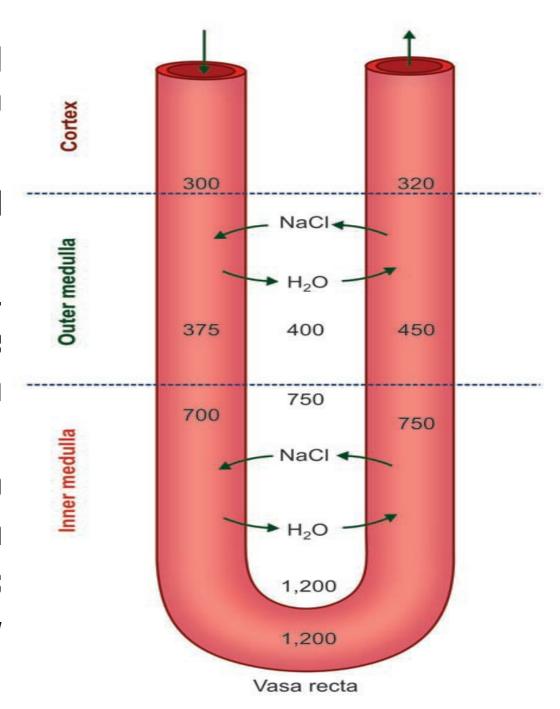
OTHER FACTORS RESPONSIBLE FOR HYPEROSMOLARITY

RECIRCULATION OF UREA

 Fifty percent of filtered urea is reabsorbed in proximal convoluted tubule along with an equal amount of urea is secreted in the loop of Henle.

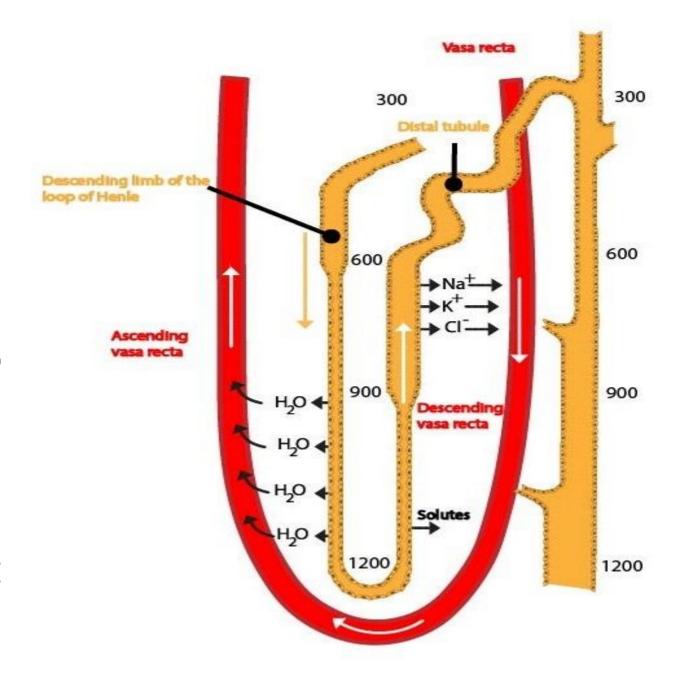

- So in distal convoluted tubule amount of urea is increased as in glomerulus filtrate.
- Normally Collecting duct is impermeable to urea. But due to water reabsorption from distal convoluted tubule and collecting duct in the presence of ADH, urea concentration increases in collecting duct.
- Now due to concentration gradient, urea diffuses from the collecting duct into medullary interstitium. By this the concentration of urea increases in the inner medulla resulting in hyperosmolarity.
- Again, by concentration gradient, urea enters the ascending limb. From here, it passes
 through distal convoluted tubule and reaches the collecting duct.
- Urea enters the medullary interstitium from collecting duct. By this way urea recirculates
 repeatedly and helps to maintain the hyperosmolarity of inner medullary interstitium.
- Only a small amount of urea is excreted in urine.

2. COUNTERCURRENT EXCHANGER


- Vasa recta functions as countercurrent exchanger.
- It is responsible for the maintenance of medullary gradient, which is developed by countercurrent multiplier.

ROLE OF VASA RECTA IN THE MAINTENANCE OF MEDULLARY GRADIENT

- Vasa recta acts like countercurrent exchanger because of its position.
- It is also 'U'shaped tubule with a descending limb, hairpin bend and an ascending limb.
- Vasa recta runs parallel to loop of Henle but in opposite direction.



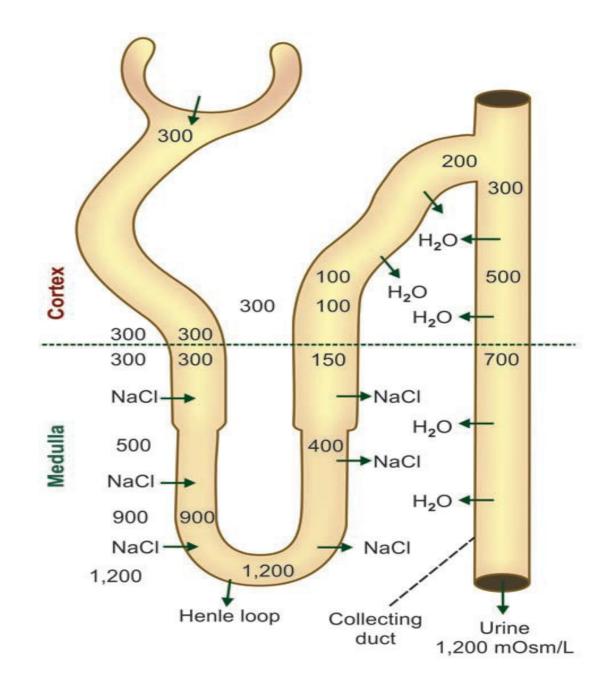
- The sodium chloride reabsorbed from ascending limb of Henle loop enters in the descending limb of vasa recta via the medullary interstitium.
- Simultaneously water diffuses from descending limb of vasa recta into medullary interstitium.
- The blood flows very slowly through vasa recta.
 So, a large quantity of sodium chloride accumulates in descending limb of vasa recta and flows slowly towards ascending limb.
- By the time the blood reaches the ascending limb of vasa recta, the concentration of sodium chloride increases very much. This causes diffusion of sodium chloride into the medullary interstitium.

- Simultaneously, water from medullary interstitium enters the ascending limb of vasa recta. And the cycle is repeated.
- Therefore, when blood passes through the ascending limb of vasa recta, sodium chloride diffuses out of blood and enters the interstitial fluid of medulla and, water diffuses into the blood.
- Thus, vasa recta retains sodium chloride in the medullary interstitium and removes water from it. So, the hyperosmolarity of medullary interstitium is maintained.
- Recycling of urea also occurs through vasa recta.
- From medullary interstitium, along with sodium chloride, urea also enters the descending limb of vasa recta.

- When blood passes through ascending limb of vasa recta, urea diffuses back into the medullary interstitium along with sodium chloride.
- Thus, sodium chloride and urea are exchanged for water between the ascending and descending limbs of vasa recta, hence this system is called countercurrent exchanger.

ROLE OF ADH

- Final concentration of urine is achieved by the action of ADH.
- Normally, the distal convoluted tubule and collecting duct are not permeable to water.
- But the presence of ADH makes them permeable, resulting in water reabsorption.
- Water reabsorption induced by ADH is called facultative reabsorption of water.
- A large quantity of water is removed from the fluid while passing through distal convoluted tubule and collecting duct. So, the urine becomes hypertonic with an osmolarity of 1,200 mOsm/L.



SUMMARY OF URINE CONCENTRATION

 When the glomerular filtrate passes through renal tubule, its osmolarity is altered in different segments as described below.

1. BOWMAN CAPSULE

- Glomerular filtrate collected at the Bowman capsule is isotonic to plasma.
- This is because it contains all the substances of plasma except proteins.
- Osmolarity of the filtrate at Bowman capsule is 300 mOsm/L.

2. PROXIMAL CONVOLUTED TUBULE

- When the filtrate flows through proximal convoluted tubule, there is active reabsorption of sodium and chloride followed by obligatory reabsorption of water.
- So, the osmolarity of fluid remains the same as in the case of Bowman capsule, i.e. 300 m0sm/L. Thus, in proximal convoluted tubules, the fluid is **isotonic to plasma.**

3. THICK DESCENDING SEGMENT

- When the fluid passes from proximal convoluted tubule into the thick descending segment, water is reabsorbed from tubule into outer medullary interstitium by means of osmosis.
- It is due to the increased osmolarity in the medullary interstitium, i.e. outside the thick descending tubule. The osmolarity of the fluid inside this segment is between 450 and 600 mOsm/L. That means the fluid is slightly **hypertonic to plasma**.

4. THIN DESCENDING SEGMENT OF HENLE LOOP

- As the thin descending segment of Henle loop passes through the inner medullary interstitium (which is increasingly hypertonic) more water is reabsorbed.
- This segment is highly permeable to water and so the osmolarity of tubular fluid becomes equal to that of the surrounding medullary interstitium.
- In the short loops of cortical nephrons, the osmolarity of fluid at the hairpin bend becomes 600 mOsm/L, where in the long loops of juxtamedullary nephrons osmolarity is 1,200 mOsm/L at the same place. Thus in this segment the fluid is **hypertonic to plasma**.

5. THIN ASCENDING SEGMENT OF HENLE LOOP

- When the thin ascending segment of the loop ascends upwards through the medullary region, osmolarity decreases gradually.
- Due to concentration gradient, sodium chloride diffuses out of tubular fluid and osmolarity decreases to 400 m0sm/L. The fluid in this segment is slightly **hypertonic to plasma**.

6. THICK ASCENDING SEGMENT

- This segment is impermeable to water. But there is active reabsorption of sodium and chloride from this.
- Reabsorption of sodium decreases the osmolarity of tubular fluid to a greater extent.
- The osmolarity is between 150 and 200 m0sm/L. The fluid inside becomes hypotonic to plasma.

7. DISTAL CONVOLUTED TUBULE AND COLLECTING DUCT

- In the presence of ADH, distal convoluted tubule and collecting duct become permeable to water resulting in water reabsorption and final concentration of urine.
- It is found that in the collecting duct, Principal (P) cells are responsible for ADH induced water reabsorption.
- Reabsorption of large quantity of water increases the osmolarity to 1,200 m0sm/L.
 The urine becomes hypertonic to plasma.

THANK YOU